

Implementation of an anticipated reconstitution circuit, and reconstitution modalities of cyclophosphamide vials using a PharmashakerV3©

T.Neocleous¹, M.Sangnier¹, J-M. Bernadou¹, G. Bouguéon^{1,2} A.Berroneau¹,

Pharmaceutical Technology Department, Bordeaux University Hospital, Avenue de Magellan, 33604 Pessac, France

2 ARNA Laboratoire Chembio Pharm 1/12/12 INSERM - UMR 5320 CNRS Université de Bordeaux, France

Introduction

In our sterile production unit (SPU) approximately 26 vials of cyclophosphamide (CYP) 1000mg are reconstituted per week

Occurring issues:

- Long dissolution of CYP
- Contributes to the development of musculoskeletal disorders
- · Impact on production flow and preparation quality

Objectives

- ✓ Study the feasibility of an early reconstitution of CYP vials using a PharmashakerV3© (PS)
- ✓ Study the reconstitution modalities in order to fluidify the circuit while guaranteeing the handler's comfort and the patient's safety

Material and methods

Feasibility:

- List the possible scenarios based on the UPS organization
- · Rate the advantages and disadvantages at a multidisciplinary meeting
 - -2 = major negative impact on activity
 - +2 = major positive impact on activity

Reconstitution and shaking of the CYP vials:

- Manually or via the PS for 2, 4 and 6 minutes (3 vials per method)
- Visual check at the end of shaking → repeat the procedure in the event of incomplete dissolution
- Assessed by High Performance Liquid Chromatography method (HPLC-UV) (1) (C18 RP; H20/ACN 50/50; 50mmx4mmx3μm; 200nm).

Assay of 216 samples

Controls 3 parameters :

- ✓ Average conformity
- ✓ Standard deviation
- ✓ Coefficient of variation

Results

	Description		Advantages	Disadvantages	Average rating
Scenario nº1	PS in isolator		- ↓ risk of microbiological contamination and handling accidents - Optimization of production time - No need for additional formation - One sterilisation	- PS sterilisation - cluttered isolator	+ 5
Scenario n°2	Reconstitution in isolator	PS in sterile hood	- Uncluttered isolator - Agitation programmable by non-handling personnel - Staff training in sterile dressing	Additional precautions (cross-contamination) Sterile dressing cluttered isolator Moving between two different rooms Several sterilisations	- 5,5
Scenario n°3	URC2 Reconstitution and ag	gitation in sterile hood	- Uncluttered isolator - Sterile hood handling training - Staff training in sterile dressing - One sterilisation	- Additional precautions (cross-contamination) - Staff unavailable during handling - cluttered isolator - Strerile dressing - Double visual control	-9,25

$Vials\ conservation: 4^{\circ}C$

	Manual	2x2min	4min	6min
Average conformity	96,13%	97,83%	96,359%	96,545
Standard deviation	1,121	0,294	5,067	3,941
Coefficient of variation	0,012	0,003	0,053	0,041

A better result was obtained with 2x2min method:

- \checkmark higher average compliance
- ✓ lower standard deviation
- ✓ lower coefficient of variation.

To note:

✓ Only the 2 minutes method required repetition to be successful

Discussion

- This project enabled us to set up an early reconstitution of CYP in our UPS according to the procedure in scenario 1:
 - Reconstitution in an isolator, shaking on PS in an isolator then kept vials at 4°C.
 - After multidisciplinary evaluation, scenario 1 appears to be the most suitable in terms of organization and staff protection.
- A similar quality of dissolution to manual shaking was noted (average in our SPU: 3min40), with the 2 minutes repeated method.
- This method allows us:
 - ✓ To observe the progress of the dissolution
 - ✓ Turn the bottle upside down between each procedure to homogenise the contents
 - ✓ Limit the aggregates' formation
- The introduction of PS in our SPU limited TMS and associated with a human action, optimizes the dissolution and fluidify the production.
- → It remains to be seen if this process can be applied to other products in the future, in SPU or other services.