Characterisation of polymer films for intravenous solvent bags packaging #### C. HOSOTTE²; L: CARREZ²; F. SADEGHIPOUR^{1,2} - 1: Service de Pharmacie, Centre Hospitalier Universitaire Vaudois, Lausanne, Suisse - ² : Université de Genève, Genève, Suisse - ³ : Institut des Sciences Pharmaceutiques de Suisse Occidentale (ISPSO), Université de Genève et de Lausanne, Suisse #### Context - Pharmaceutical products consume large amounts of plastic. - Chemotherapy production units use large quantities of medical devices, medicines, energy and single-use equipment and generate significant amounts of waste. - Understanding how to reduce the climate impact of pharmaceutical products through an intravenous (IV) solvent bag. # **Objectives** - Determine the technical properties of the primary and secondary packaging films used for IV solvent bags production. - Identify alternative polymer films with similar technical specifications that would consume less energy in production or are potentially recyclable. # Conclusion The PP-based primary and secondary films studied have similar characteristics to standard films and could be potential candidates to replace current films. ## Perspectives: - Evaluating the impact of using PP-based films on the carbon footprint of IV solvent bags. - Assessing the possibility of using recycled materials for primary and secondary packaging of IV solvent bags. # Methods - Primary packaging of solvent bags + 4 alternative primary packaging films made of - Secondary packaging of solvent bags - + 1 alternative secondary packaging made of PP #### **Measured characteristics:** Film thickness polypropylene (PP) Polymer layer thickness Chemical composition by FTIR Thermal properties by DSC Mechanical properties by tensile strength Water vapour permeability by WVTR Transparency by haze measurement ### Results | | | | Primary films | | | | | Secondary films | | |---------------------------------|--------------------|--------------|---------------------|--------------------|-----------------------------|------------------------------|--------------------|-------------------------------------|---------------------------| | Characteristics | Unit | Target value | Film 1
(current) | Film 2 | Film 3 | Film 4 | Film 5 | Film 6
(current) | Film 7 | | Film thickness | μ m ± σ | 200 ± 20 * | 198.8 ± 2.8 | 203.9 ± 4.1 | 190.0 ± 1.3 | 194.5 ± 0.7 | 198.3 ± 6.1 | 127.9 ± 1.5 | 157.9 ± 5.0 | | Chemical composition | Internal side | NA | PP; SEBS | PP; SEBS | PP; PP-PE | PP; PP-PE | PP | PP-PE; PE | PP | | | External side | NA | Acrylate;
ETFE | PP | PP | PP | PP | Nylon | PP | | Melting point | °C | >121 | 92.19 | 137.09 ;
164.79 | 61.01;
133.49;
160.97 | 133.31;
158.96;
232.72 | 158.93 ;
231.03 | 129.8;
148.4;
215.4;
239.1 | 129.7;
150.2;
222.7 | | Stiffness | $MPa \pm \sigma$ | NA | 0.90 ± 0.18 | 5.25 ± 0.29 | 4.76 ± 0.13 | 4.52 ± 0.15 | 2.15 ± 0.80 | 7.19 ± 0.42 | 7.03 ± 0.18 | | Elasticity | $MPa \pm \sigma$ | NA | 6.75 ± 0.15 | 15.63 ± 0.10 | 14.25 ± 0.19 | 13.74 ± 0.22 | 11.49 ± 0.21 | 23.93 ± 0.46 | 16.16 ± 0.63 | | Permeability
(38°C, 100% HR) | g/m2.day | <3.5 | 3.87 ± 0.13 | 2.06 ± 0.10 | 2.31 ± 0.05 | 2.18 ± 0.08 | 2.67 ± 0.01 | 1.59 ± 0.05 | 1.72 ± 0.12 | | Transparency | % ± σ | <15 | 8.10 ± 1.53 | 9.61 ± 0.55 | 11.35 ± 2.30 | 13.27 ± 3.06 | 6.55 ± 0.73 | 14.47 ± 0.85 | 22.42 ± 2.55 | *For primary films; SEBS: Styrene-Ethylene-Butylene-Styrene; PE: polyethylene; ETFE: Ethylene tetrafluoroethylene Estimated carbon footprint of film 1 vs film 2: kgCO₂eq/kg kgCO₂eq/kg