Characterisation of polymer films for intravenous solvent bags packaging

C. HOSOTTE²; L: CARREZ²; F. SADEGHIPOUR^{1,2}

- 1: Service de Pharmacie, Centre Hospitalier Universitaire Vaudois, Lausanne, Suisse
- ² : Université de Genève, Genève, Suisse
- ³ : Institut des Sciences Pharmaceutiques de Suisse Occidentale (ISPSO), Université de Genève et de Lausanne, Suisse

Context

- Pharmaceutical products consume large amounts of plastic.
- Chemotherapy production units use large quantities of medical devices, medicines, energy and single-use equipment and generate significant amounts of waste.
- Understanding how to reduce the climate impact of pharmaceutical products through an intravenous (IV) solvent bag.

Objectives

- Determine the technical properties of the primary and secondary packaging films used for IV solvent bags production.
- Identify alternative polymer films with similar technical specifications that would consume less energy in production or are potentially recyclable.

Conclusion

The PP-based primary and secondary films studied have similar characteristics to standard films and could be potential candidates to replace current films.

Perspectives:

- Evaluating the impact of using PP-based films on the carbon footprint of IV solvent bags.
- Assessing the possibility of using recycled materials for primary and secondary packaging of IV solvent bags.

Methods

- Primary packaging of solvent bags + 4 alternative primary packaging films made of
- Secondary packaging of solvent bags
 - + 1 alternative secondary packaging made of PP

Measured characteristics:

Film thickness

polypropylene (PP)

Polymer layer thickness

Chemical composition by FTIR

Thermal properties by DSC

Mechanical properties by tensile strength

Water vapour permeability by WVTR

Transparency by haze measurement

Results

			Primary films					Secondary films	
Characteristics	Unit	Target value	Film 1 (current)	Film 2	Film 3	Film 4	Film 5	Film 6 (current)	Film 7
Film thickness	μ m ± σ	200 ± 20 *	198.8 ± 2.8	203.9 ± 4.1	190.0 ± 1.3	194.5 ± 0.7	198.3 ± 6.1	127.9 ± 1.5	157.9 ± 5.0
Chemical composition	Internal side	NA	PP; SEBS	PP; SEBS	PP; PP-PE	PP; PP-PE	PP	PP-PE; PE	PP
	External side	NA	Acrylate; ETFE	PP	PP	PP	PP	Nylon	PP
Melting point	°C	>121	92.19	137.09 ; 164.79	61.01; 133.49; 160.97	133.31; 158.96; 232.72	158.93 ; 231.03	129.8; 148.4; 215.4; 239.1	129.7; 150.2; 222.7
Stiffness	$MPa \pm \sigma$	NA	0.90 ± 0.18	5.25 ± 0.29	4.76 ± 0.13	4.52 ± 0.15	2.15 ± 0.80	7.19 ± 0.42	7.03 ± 0.18
Elasticity	$MPa \pm \sigma$	NA	6.75 ± 0.15	15.63 ± 0.10	14.25 ± 0.19	13.74 ± 0.22	11.49 ± 0.21	23.93 ± 0.46	16.16 ± 0.63
Permeability (38°C, 100% HR)	g/m2.day	<3.5	3.87 ± 0.13	2.06 ± 0.10	2.31 ± 0.05	2.18 ± 0.08	2.67 ± 0.01	1.59 ± 0.05	1.72 ± 0.12
Transparency	% ± σ	<15	8.10 ± 1.53	9.61 ± 0.55	11.35 ± 2.30	13.27 ± 3.06	6.55 ± 0.73	14.47 ± 0.85	22.42 ± 2.55

*For primary films; SEBS: Styrene-Ethylene-Butylene-Styrene; PE: polyethylene; ETFE: Ethylene tetrafluoroethylene

Estimated carbon footprint of film 1 vs film 2:

kgCO₂eq/kg

kgCO₂eq/kg

