

Development of a gamma counter calibration protocol for radiopharmaceutical applications

E. Oger – L. Guiheneuc – M. Bourgeois CHU de Nantes (France)

Introduction

Use of a gamma counter in clinical trials and routine practice for counting differents isotopes such as ^{99m}Tc, ¹²⁵I, ¹⁷⁷Lu, ⁸⁹Zr

Necessary metrological and analytical validations

Objectifs

Determination of the counting efficiency for several isotopes and development of a standardised and reproductible protocol

Materials and methods

Use of the gamma counter: Which applications? Which isotopes?
Critical parameters for analysis (analytical range, volume, counting time, counting window, etc.)?

Creation of a protocol and an Excel spreadsheet to calculate the dilutions required to cover the defined analytical range and analyse the data

Equipment qualification:

Analytical balance, Micropipettes,
Dose calibrator

LABORATORY WORK

1st calibration range to determine the maximum volumetric activity before saturation of the gamma counter (dead time factor <1,04)

2nd **calibration range** with volumetric activities below the saturation limit, determination of **counting efficiency** and creation of an accuracy profile of +/-10% in order to validate the data

Dilutions with predefined volumetric activities and counting of 5 to 10 samples per dilution with calculation of the theoretical number of Count Per Minute (CPM) and comparison with the practical CPM obtained.

Results

Spectrum obtained after counting the ¹⁷⁷Lu samples with a gamma counter

>	Isotopes	Counting time (min)	Counting window (keV)	Volume per sample (mL)	Volumetric activity at saturation (kBq/mL)	Counting efficiency
	^{99m} Tc	1	110-180	1	22,8	79,5%
	¹²⁵	5	15-80	2	6,65	100%
	¹⁷⁷ Lu	5	150-370	0,2	540	9,2%
	⁸⁹ Zr	1	450-570 et 830-995	0,5	16,6	23,0%

 $= \frac{CPM \ obtained}{Theoretical \ CPM} * 100$

Gradual improvement of the protocol and Excel spreadsheet aimed at standardising measurements

Discussion/Conclusion

Determination of the counting efficiency: an essential metrological step in interpreting the results of a gamma counter

Protocol enabling standardisation and simplification of the implementation of the counting of new isotopes

Impact of counting geometry (volume, bottle shape) on the results obtained > Repeat the study with the desired parameters.

Image : LabLogic