Un analyseur de gaz du sang au service du dosage des poches de nutrition parentérale?

Évaluation des performances et validation de la méthode de dosage

K.Tlili¹, N.Chaoui¹, A. Diallo¹, X.Deviot¹

¹Pharmacie à Usage Intérieur Centre Hospitalier de Saint-Denis (CHSD), France

INTRODUCTION

L'unité de nutrition parentérale (NP) de notre établissement produit des poches de NP binaires. Un contrôle libératoire par dosage des électrolytes était réalisé au moyen d'une électrophorèse capillaire, dont le fournisseur a cessé toute activité. Après comparaison de divers équipements, notre choix s'est porté sur un analyseur de gaz du sang (AGS), initialement conçu pour des matrices humaines. Objectif : Valider la méthode de dosage.

MATERIELS & METHODE

	Solutions dosées	Nombre de points de gamme ; de répliques	Calcul/ test statistique effectué
Spécificité	Solution pure de chaque électrolyte à la même concentration que dans les poches de NP standard G6	6 points de gamme ; 5 répliques	Comparaison pentes des droites de régression linéaire (électrolyte seul <i>versus</i> dans la matrice), test de Student
Répétabilité/Fidélité intermédiaire (FI)	Poches de NP standard G6 & G13	6 répliques ; FI sur 3 jours avec 2 manipulateurs différents	Moyenne ; Coefficient de variation (CV)
Linéarité	Solution de cation préparée	6 points de gamme ; 5 répliques Comparaison des pentes des droites de régression linéaire (concer vs dosée); test de Fisher	
Limite de quantification inférieure (LQI)			LQI = $10 s$ d/ b 1 Avec sd: écart-type et b1 pente de la droite d'étalonnage
Exactitude & Justesse			Determination des Intervalles de confiance (IC) des recouvrements moyens (R.)

Dosage du Na, K et Ca par potentiométrie

RESULTATS

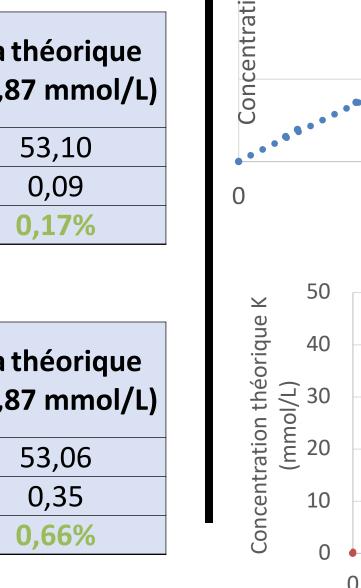
Spécificité

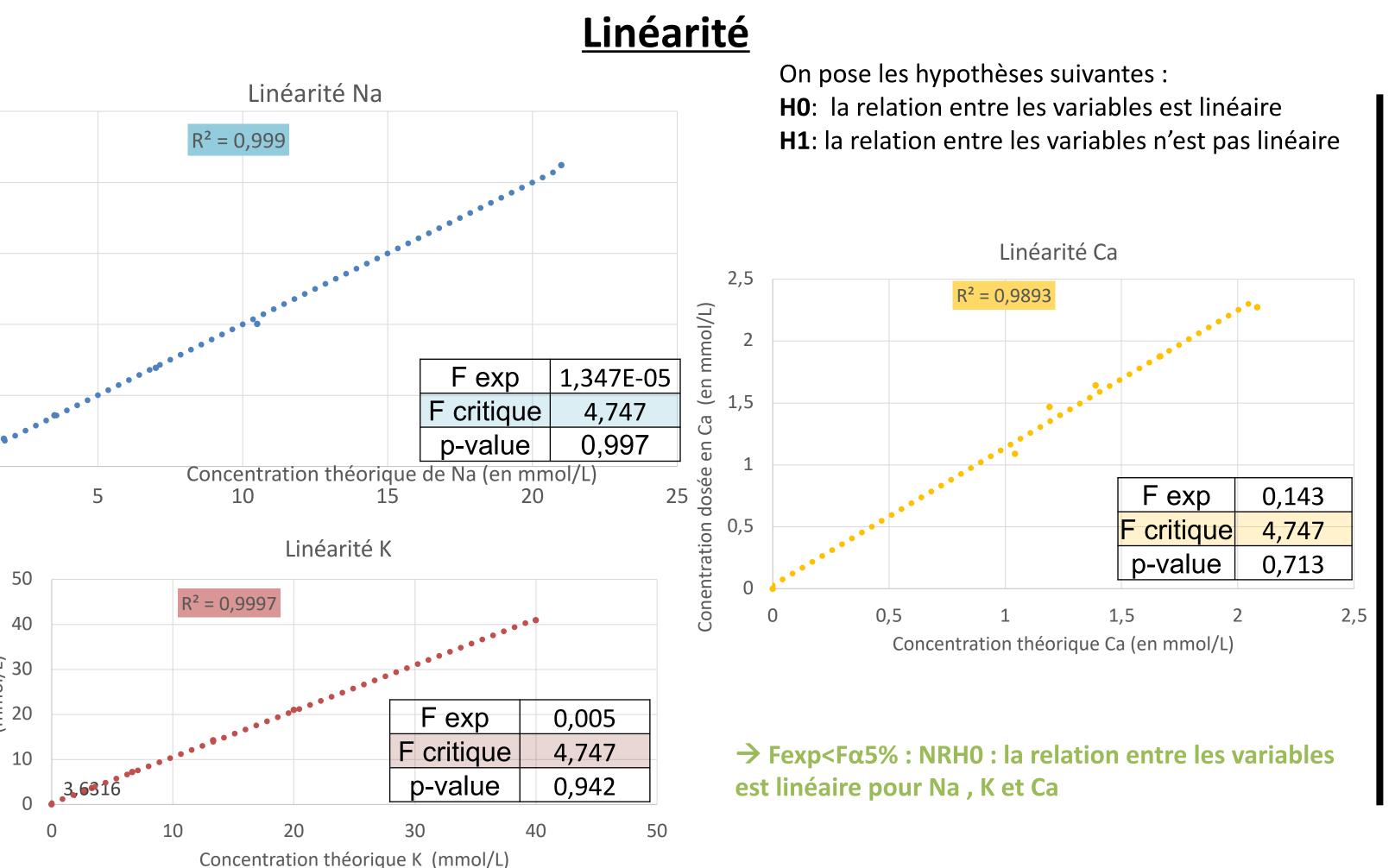
On pose les hypothèses suivantes : HO: les pentes sont non significativement différentes **H1**: les pentes sont significativement différentes

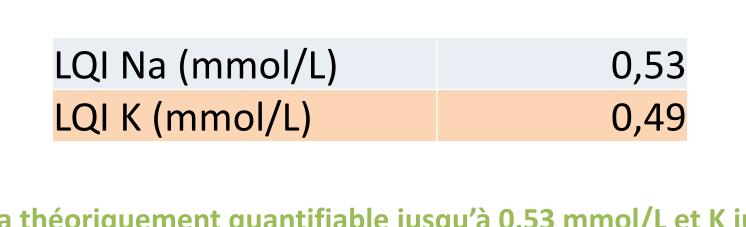
		Na seul		Na dans G6		
aleur de la pente		0,869		1,007		
écart-type			0,11	0,053		
	t exp	·				
	p-valu		0,2			

Texp<Tα5%: NRHO: les pentes sont non significativement différentes pour le Na

	K se		K	dans G6
Valeur de la pente	0,738		0,981	
écart-type	0,091		0,048	
t ex	t exp t 5%, 8 ddl		13	
t 5%,			571	
p-va	p-value		29	
T _{exp} <t<sub>α5%: NRH0 : les pente</t<sub>		·		et différentes neur


G13 / Opérateur K théorique 1/ 11/12/24 (10,05 Ca (17,54 Na théorique (31,44 mmol/L) mmol/L) mmol/L) (50,87 mmol/L) mmol/L) **MOYENNE** 52,81 **MOYENNE** 12,73 32,35 8,41 0,79 **ECART TYPE** 0,07 **ECART TYPE** 1,49% 1,62% **CV (%) CV (%)** 0,47% G6 / Opérateur Kthéorique Cathéorique Na théorique G13 / Opérateur K théorique Ca théorique 2/ 12/12/24 (10,05 Na théorique (31,44 mmol/L) (17,54 mmol/L) mmol/L) (50,87 mmol/L) mmol/L) **MOYENNE** 53,10 32,56 **MOYENNE ECART TYPE** 0,07 **ECART TYPE** 0,06 **CV (%)** 0,17% **CV (%)** 0,35% G6 / Opérateur K théorique Ca théorique Na théorique G13 / Opérateur K théorique Ca théorique 1/ 13/12/24 Na théorique (50,87 mmol/L) mmol/L)


Na théorique


32,63

0,04

Répétabilité /FI

<u>LQI</u>

→ Na théoriquement quantifiable jusqu'à 0,53 mmol/L et K jusqu'à 0,49 mmol/ L

Exactitude-Justesse

	Taux de recouvrement moyen R	Borne sup. de l'IC R	Borne inf. de l'IC R
Na	99,93	96,54	103,32
K	103,47	99,52	107,41

→ La valeur 100 est comprise dans l'intervalle de recouvrement moyen

✓ La spécificité, répétabilité, fidélité intermédiaire et la linéarité pour le sodium et potassium nous permettent de valider la méthode

12,48

0,34

X Des tests supplémentaires sont prévus afin de valider cette méthode pour le dosage du calcium

MOYENNE

ECART TYPE

CV (%)

X LQI évaluée en théorie mais pas vérifiée en pratique

0,27

G6 / Opérateur Kthéorique Cathéorique

MOYENNE

ECART TYPE

CV (%)

✓ Contrôle libératoire des poches de NP de formule standards et individualisées

[→] Absence d'effet matrice

[→] Tous les CV sont < 10%