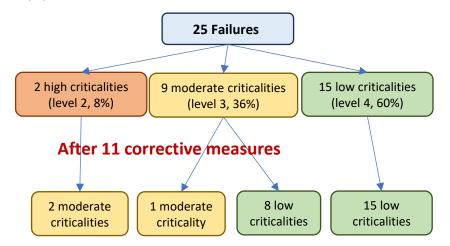


Risk Analysis on the Automated Syringe Filling Process Using the Smartfiller® Filling Machine


Sahra MUHAMMAD^{1,2}, Bérangère QUITTE¹, Marion JOBARD², Marie-Laure BRANDELY-PIAT¹, Rui BATISTA^{1,2} Clinical Pharmacy Service, ¹Ophthalmology and Oncology Sterile Preparations Unit, and ²Quality Assurance Unit, AP-HP Paris Cité University Center, Cochin Hospital, 27 rue du Faubourg St Jacques, 75014 Paris (France)

Background	Methods					
A Smartfiller [®] syringe filling machine (AddedPharma, Nederland) has been set	 Risk Analysis based on the 5M method (Materials, Methods, Labor, Raw Materials, and Environment) conducted by the pharmaceutical team Four 2-hour sessions, which has permit to : list all possible failures and their effects Evaluate frequency, detectability and severity using a scale from 1 to 5 for each failure Criticality (Cr) = Frequency (F) x Detectability (D) x Severity (S) 		Description	Interval (F*D*S)	Priority	
up in our unit to ensure the centralize		C1	Extrem criticality	[75-125]	Absolute	
production of injectable drugs		C2	High criticality	[36-75[High	
The goal of this work was to conduct a risk analysis (RA) on the		C3	Moderate criticality	[12-36[Moderate	
automated process to identify sensitive steps and determine possible improvement.		C4	Low criticality	[1-12[Low	

Results

The RA identified 25 failures. In decreasing order of frequency, the identified failures were related to equipment (loss of calibration...), to method (loading error, non-compliant cleaning...), to labor (lack of staff...), to raw materials (stock shortage...), and to environment (equipment corrosion...).

	Material	Methods	Labor	Raw material	Environment
Failures examples (High Cr)	Calibration loss (Cr=60) , no syringe recognition, carrousel jamming, improperly dipped cap, liquid leackage	Loading error, forgetting to unclamp the tubulure, non-compliant cleaning (Cr =50)	Lack of formation/staff shortage, musculoskeletal disorders	Stock shortage	Equipment corrosion

Main corrective measures

- Implementing a maintenance contract

- Double-checking caps at the end of production

- Pre-start checklist

- Adequate training

Corrective measures examples for the two failures with high criticality

 \rightarrow Calibration loss between 2 batches (Cr = 60) \rightarrow Calibration volume checking for each new batch (Cr=15)

→ Non-compliant cleaning (Cr=50) = cross contamination → Validating the cleaning process and implementing an analytical method to detect chemical contamination (Cr=20)

Conclusion The risk analysis identified the critical points of the automated process related to the SmartFiller[®] machine. By reducing the criticality through corrective actions, the risk analysis validates the routine use of Smartfiller[®] for the centralized production of injectable drugs.

Example