

IMPACT OF THE ANALYTICAL OPTIMIZATION OF A CATION QUANTIFICATION METHOD BY CAPILLARY ELECTROPHORESIS USING RBG TOOL

Louise Palmier¹, Lauralee Wnuk¹, Marion Barrieu², Lamia Ben Salah¹, Amandine Buch¹, Marie Mula¹, Joëlle Claves¹, Philip Chennell², <u>Yassine Bouattour²</u>, Valérie Sautou²
¹ CHU Clermont-Ferrand, Pôle Pharmacie, F-63003 Clermont-Ferrand, France ² Université Clermont Auvergne, CHU Clermont Ferrand, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France

INTRODUCTION

The pharmacy at Clermont-Ferrand University Hospital produces parenteral nutrition (TPN) bags for neonatal patients. Currently, the cation release assay (K^+ , Ca^{2+} , Na^+ and Mg^{2+}) is performed by capillary electrophoresis with conductivity detection (CE-C4D) and takes 8 min per bag.

Issue: Current dosing times can delay patient care management in case of large production sessions.

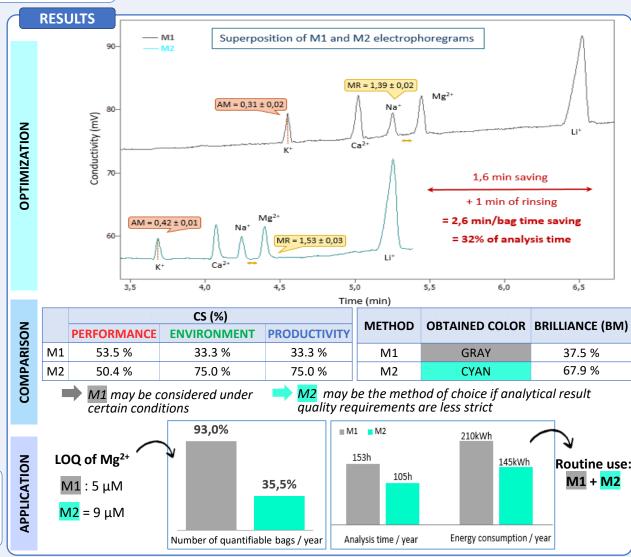
OBJECTIVE

The aim was to reduce **analysis time** while maintaining **analytical performance**, and to study the **ecological and economic impact** of this optimization using the **RGB method**.

MATERIALS AND METHODS

1. Method optimization

	Method	Dilution	Rinse time	Savitzky-Golay filter (SG)		
	M1: Initial method	With WFI	2 min	No		
	M2 : Optimized method	With histidine solution at 5 mg/mL	1 min	Yes		


- 2. M1 and M2 comparison using the RGB method
- RGB method⁽¹⁾: evaluates an analytical method according to three main attributes.
- Determination of the limit of acceptability (LAV) = 33,3% and of satisfaction (LSV) = 66,6%
- Valeurs « W » et « w » : coefficients de pondération

	RED : ANALYTICAL PERFORMANCE W=4	GREEN: SAFETY AND RESPECT FOR THE ENVIRONMENT W=3	BLUE: PRODUCTIVITY W=3
eters	Intermediate fidelity (CV) w=3; LAV = 5%; LSV = 2.5% Accuracy (relatif biais) w=3; LAV = 7.5%; LSV = 5 %	Computer energy consumption / year w=5; LAV = 149.9 kW.h; LSV = 112.5 kW.h	Analysis time for a TPN bag
Parameters	Minimum resolution (MR) w=2; LAV = 1; LSV = 1.5 Average asymmetry (AM) w=2; LAV = 0.31; LSV= 0.62	CE energy consumption / year w=5; LAV = 61 kW.h; LSV = 45.7 kW.h	LAV = 8 min; LSV= 6 min

- Color Score (CS): quantitative measure of method conformity.
- Method Brilliance (BM): weighted geometric mean of individual CS values, expresses the perfection or fiawlessness of the method.
- 3. Application for 2023
- Limit Of Quantification (LOQ): used to determine the number of quantifiable bags
- Analysis time and energy comsuption comparison

CONCLUSION

The superiority of M2 has been demonstrated according to RGB. However, the SG filter increases the LOQ of Mg^{2+} , reducing the number of quantifiable pockets. Combining M2 for high Mg^{2+} values with M1 for low values would make it possible to quantify all pockets and save 17h of analysis/year, or 23 kW.h.

