

QUALIFICATION OF A STABILITY-INDICATING METHOD FOR THE DETECTION OF IMPURITIES IN HISTIDINE 117,20 MG / 3 ML AP-HP

COM23-89453

Sara HATIM, Gaëtan BOCCADIFUOCO, Frédéric ROSA, Vincent BOUDY, Sophie DUFAŸ

Unité de Recherche et Développement Analytique, Département Recherche et Développement Pharmaceutique, AGEPS (AP-HP), 7 rue du Fer à Moulin, 75005, Paris, France

INTRODUCTION

Developpement of drugs for orphan diseases not covered by DRDPthe competitive industry (ex: The Histidine/Copper kit forMenkes disease) AGEPS

Menkes Desease

OBJECTIVES

- Demonstrate the stability indicator nature of the degradation products (DP) research method of histidine ampoules.
- □ Identify the pathways of Histidine degradation and generate DP of the active substance (Histidine).
- Demonstrate the benefit of inerting in the production of Histidine ampoules: selection of a PDD representative of the degradation, the evolution of which is evaluated with a predictive method of stability.

METHODS

Stress	Experimental co	onditions	Storage conditions	s Sampling time s (days)	
Thermal	Amber glass vials Heat chamber	-	90°C	1, 2	
Photolytic	Transparent glass vials	UV-Vis	25°C	8, 13, 20	
Oxidation	Amber glass vials	0,1 to 3% H2O2	60°C	1	
	Heat chamber	1 to 5% MMPP	60°C	1	
Hydrolysis	Amber glass vials	1M NaOH	60°C	8, 29, 57	
	Heat chamber	1M HCI	60°C	8, 29, 57	

Table 1: Degradation conditions of the Histidine solution (without inerting) prepared according to the formulation of the hospital preparation

* Detection of impurities by reversed phase HPLC-PDA and identification by LC-MS

Justification for the inerting of Histidine vials

The experimental plan using the stability prediction software based on the Arrhenius law (ASAPPrime®) Non

ннн

xZ

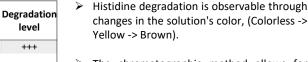
inerted

1000 Inerted

- T0: Day 0 (4 samples)
- 45°C: Day 12 (2), Day 15 (2), Day 18 (3), Day 21 (3)
- 55°C: Day 5 (2), Day 8 (2), Day 13 (2), Day 21 (3)
- 65°C: Day 2 (2), Day 4 (2), Day 8 (2), Day 17 (3) series mmm 75°C: Day 1 (2), Day 2 (2), Day 4 (2), Day 7 (3)
- 90°C: Day 1 (4), Day 2 (5)
- Evaluation of the prospective shelf life for each set.

Stress factors	Control	Thermal
ESULTS		

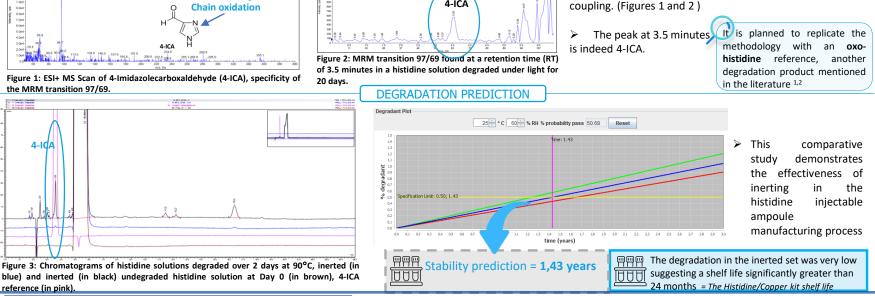
Stress factors	Control	Thermal	Molecular oxidation	Radical oxidation	Photolitic	Alkaline Hydrolysis	Acid Hydrolysis	Stress condition	
Stress Conditions	Not	90 °C	3% H ₂ O ₂	5% MMPP	UV-VIS light	1M NaOH	1M HCI	Stress condition	
	Applicable		60 °C	60 °C	25 °C	60 °C	60 °C		
Aspect	Colorless	Colorless to	Yellow to	Yellow to brown	Colorless to	Colorless	Colorless	H ₂ O ₂ Oxidation	
	Coloriess	yellow	brown	+ precipitate	yellow	to yellow	to yellow		
Sampling time (Days)	0	2	1	1	21	57	57	MMPP Oxidation	
Histidine (RT = 5,80 min)	100%	97,96%	94,96%	95,74%	98,69%	97,21%	98,91%	Photolytic	
Peak 2 (RRT = 0,62)	0%	0,52%	3,83%	1,27%	0,86%	0,54%	0,43%	Thermal	
Peak 4 (RRT = 2,86)	0%	0,65%	0,47%	2,03%	1,31%	1,34%	0,46%	Alkaline	
Sum of peaks	0	15	35	23	31	13	11	Acid	
Table 2: Examples of results in percentage of normalized area of Histiding DB under various stress factors (Peak 1									


Table 2: Examples of results in percentage of normalized area of Histidine DP under various stress factors. (Peak 1

RRT = 0.43. Peak 2 RRT = 0.62, Peak 3 RRT = 2.00, and Peak 4 RRT = 2.80) IDENTIFICATION OF A DP THROUGH MS COUPLING

4-ICA

evacuated before detector 4-ICA


FORCED DEGRADATION

> The chromatographic method allows for the separation of a large number of DPs highlighting the method's stabilityindicating nature (Figure 3).

> Oxidation is identified as the primary degradation pathway of histidine

The LC-UV analysis revealed that 4-ICA elutes at the same retention time as Peak 2. (Figure 3) The identification of Peak 2 was confirmed through LC-MS It is planned to replicate the methodology with an oxohistidine reference, another degradation product mentioned

Histidine 5,0 – 6,0 mii

level

+++

+++

++

+

+

+

CONCLUSION

1.6e5 1.5e5 1.4e5 1.3e5 1.2e5 1.1e5 1.0e5 9.0e4

the MRM transition 97/69

4-IdA

reference (in pink).

The method used in stability studies allows for the visualization and separation of various DPs obtained through forced degradation. The identification of 4-imidazolecarboxaldehyde has provided a representative indicator of histidine solution degradation. The ASAPPrime® program has enabled the prediction of the stability of the histidine formula in less than a month and justified the use of an inerting process for histidine vials.

This study illustrates the analytical methodologies employed in the drug development process.